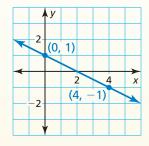

Writing Equations in Slope-Intercept Form (pp. 165–170)

Write an equation of the line in slope-intercept form.

Find the slope and y-intercept.

Let $(x_1, y_1) = (0, 3)$ and $(x_2, y_2) = (3, 5)$.


$$m = \frac{y_2 - y_1}{x_2 - x_1} = \frac{5 - 3}{3 - 0} = \frac{2}{3}$$

Because the line crosses the y-axis at (0, 3), the y-intercept is 3.

So, the equation is $y = \frac{2}{3}x + 3$.

Write an equation of the line in slope-intercept form.

Write a linear function f with the given values.

2.
$$f(0) = 8, f(4) = 20$$

3.
$$f(0) = 5, f(2) = -3$$

4.
$$f(5) = -1, f(0) = -1$$

5.
$$f(-4) = 0, f(0) = 0$$

Writing Equations in Point-Slope Form (pp. 171–176)

Write an equation in point-slope form of the line that passes through the point (-1, -8)and has a slope of 3.

$$y - y_1 = m(x - x_1)$$
 Write the point-slope form.
 $y - (-8) = 3[x - (-1)]$ Substitute 3 for m , -1 for x_1 , and -8 for y_1 .

$$y + 8 = 3(x + 1)$$
 Simplify.

The equation is y + 8 = 3(x + 1).

6. Write an equation in point-slope form of the line that passes through the point (4, 7) and has a slope of -1.

Write an equation in slope-intercept form of the line that passes through the given points.

Write a linear function f with the given values.

10.
$$f(10) = 5, f(2) = -3$$

10.
$$f(10) = 5, f(2) = -3$$
 11. $f(3) = -4, f(5) = -4$ **12.** $f(6) = 8, f(9) = 3$

12.
$$f(6) = 8, f(9) = 3$$

Writing Equations of Parallel and Perpendicular Lines (pp. 177–182)

Determine which of the lines, if any, are parallel or perpendicular.

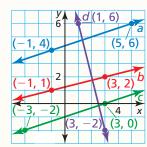
Line *a*:
$$y = 2x + 3$$

Line *b*:
$$2y + x = 5$$

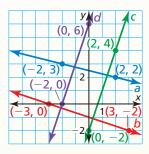
Line *c*:
$$4y - 8x = -4$$

Write the equations in slope-intercept form. Then compare the slopes.

Line *a*:
$$y = 2x + 3$$


Line b:
$$y = -\frac{1}{2}x + \frac{5}{2}$$
 Line c: $y = 2x - 1$

Line *c*:
$$y = 2x - 1$$


Lines a and c have slopes of 2, so they are parallel. Line b has a slope of $-\frac{1}{2}$, the negative reciprocal of 2, so it is perpendicular to lines a and c.

Determine which of the lines, if any, are parallel or perpendicular. Explain.

13.

14.

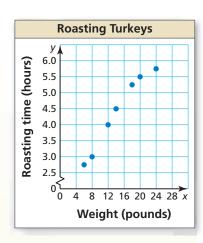
- **15.** Line *a* passes through (0, 4) and (4, 3). Line b passes through (0, 1) and (4, 0). Line c passes through (2, 0) and (4, 4).
- **16.** Line a: 2x 7y = 14

Line *b*:
$$y = \frac{7}{2}x - 8$$

Line
$$c: 2x + 7y = -21$$

- 17. Write an equation of the line that passes through (1, 5) and is parallel to the line y = -4x + 2.
- **18.** Write an equation of the line that passes through (2, -3) and is perpendicular to the line y = -2x - 3.

Scatter Plots and Lines of Fit (pp. 185–190)


The scatter plot shows the roasting times (in hours) and weights (in pounds) of seven turkeys. Tell whether the data show a positive, a negative, or no correlation.

As the weight of a turkey increases, the roasting time increases.

So, the scatter plot shows a positive correlation.

Use the scatter plot in the example.

- **19.** What is the roasting time for a 12-pound turkey?
- **20.** What is the weight of a turkey that has a roasting time of 5.5 hours?
- **21.** Write an equation that models the roasting time as a function of the weight of a turkey. Interpret the slope and y-intercept of the line of fit.

4.5 Analyzing Lines of Fit (pp. 191–198)

The table shows the heights x (in inches) and shoe sizes y of several students. Use a graphing calculator to find an equation of the line of best fit. Identify and interpret the correlation coefficient.

Step 1 Enter the data from the table into two lists.

Step 2 Use the *linear regression* feature.

LinReg y=ax+b a=.4989919355 b=-23.4828629 r²=.9477256904 r=.9735120392 Height,

X

64

62

70

63

72

68

66 74

68

59

Shoe

size, y

9

7

12

8

13

9.5 9

13.5 10

6.5

An equation of the line of best fit is
y = 0.50x - 23.5. The correlation coefficient is about 0.974. This means that
the relationship between the heights and the shoe sizes has a strong positive
correlation and the equation closely models the data.

- **22.** Make a scatter plot of the residuals to verify that the model in the example is a good fit.
- **23.** Use the data in the example. (a) Approximate the height of a student whose shoe size is 9. (b) Predict the shoe size of a student whose height is 60 inches.
- **24.** Is there a causal relationship in the data in the example? Explain.

4.6 Arithmetic Sequences (pp. 199–206)

Write an equation for the *n*th term of the arithmetic sequence $-3, -5, -7, -9, \dots$ Then find a_{20} .

The first term is -3, and the common difference is -2.

$$a_n = a_1 + (n-1)d$$

Equation for an arithmetic sequence

$$a_n = -3 + (n-1)(-2)$$

Substitute -3 for a_1 and -2 for d.

$$a_n = -2n - 1$$

Simplify.

Use the equation to find the 20th term.

$$a_{20} = -2(20) - 1$$

Substitute 20 for *n*.

$$= -41$$

Simplify.

The 20th term of the arithmetic sequence is
$$-41$$
.

Write the next three terms of the arithmetic sequence.

27.
$$\frac{7}{8}$$
, $\frac{3}{4}$, $\frac{5}{8}$, $\frac{1}{2}$, ...

Write an equation for the *n*th term of the arithmetic sequence. Then find a_{30} .